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Abstract

We consider turbulent channel flows computed with DNS and LES employing a Fourier–Galerkin method. We

show that the balance of total mean shear stress, a measure of conservation of the numerical method, is satisfied only

weakly (i.e., in an integral sense), rather than strongly (i.e., pointwise). A study of filters induced by projectors reveals

that a certain filter, the Dirichlet filter, provides a tool for extracting shear stresses that are strongly conservative.

Numerical results support the theory and demonstrate that spurious oscillations, present in the unfiltered stresses, are

also suppressed.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

We consider turbulent channel flows calculated by direct numerical simulation (DNS) and large eddy

simulation (LES) with a Fourier–Galerkin formulation. We investigate the behavior of the mean shear

stresses as a pointwise function of the wall-normal coordinate. The mean shear stresses, namely, the

Reynolds stress, viscous stress, and subgrid-scale stress, are physically interesting, and the residual of the

shear stress balance is an indication of the satisfaction, or lack of satisfaction, of streamwise momentum
conservation, which is viewed as an important measure of the veracity and accuracy of the approach. Our

past experiences computing mean shear stresses reveal that they can behave anomalously in otherwise
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accurately computed flows. In particular, spurious oscillations and violations of conservation may be

observed. In order to better understand this phenomenon and identify possible remedies we observe that

the total mean shear stress balance in the Fourier–Galerkin formulation is only satisfied weakly (i.e., in an

integral sense), rather than strongly (i.e., pointwise), as for the exact solution. Because higher wave-number

components are uncontrolled by the weak satisfaction of the total shear stress balance, oscillations and

violations of conservation are not precluded. This appears to be the source of the problem. It is obvious

that some type of filtering is capable of removing the high wave-number oscillations, but there is no

guarantee the filtered quantity will achieve conservation. Our goal is to determine a filter which simulta-
neously removes oscillations and attains conservation strongly. In pursuit of this end, we briefly review

least-squares approximation, the associated projection operator, and the induced filter, in terms of an

undefined basis. In order to identify an appropriate basis, we look to the weak form of the conservation

law. We find that a basis which removes high wave-number components and guarantees pointwise con-

servation ab initio, is given by the wall-normal direction derivative of the basis functions used to represent

the zero wave-number component of the streamwise velocity. The corresponding projection operator is the

classical Dirichlet projector and we dub the induced filter the Dirichlet filter.

We then perform numerical calculations to test the theoretical predictions. We calculate an equilibrium
turbulent channel flow at a Reynolds number of 395 based on friction velocity and half channel width, with a

coarse DNS and an LES employing the dynamic Smagorinsky model. The results show the unfiltered shear

stresses exhibit oscillations and violate conservation, whereas the Dirichlet-filtered shear stresses confirm the

theoretical predictions in that the spurious oscillations are absent and conservation is attained pointwise.

The ideas used to derive the results obtained herein are more general than the particular case considered.

Variational methods, such as the Fourier–Galerkin method, often satisfy conservation laws only weakly.

Analysis can reveal certain projected quantities which satisfy conservation strongly and, at the same time,

exhibit higher-order accuracy. Illustrations of these concepts are contained in [1,2]. See also references
therein for further elaboration. The conclusion that may be drawn from these and the present work is that

there is often an optimal way to compute certain functionals of a solution. Careful analysis of the numerical

method employed is an essential ingredient in achieving this objective.

An outline of the paper follows: In Section 2 we state the problem considered and recall the balance of

mean shear stresses. In Section 3 we review relevant aspects of the numerical method. We then review

projections, induced filters, and their roles in attaining conservation. This development leads to the iden-

tification of the Dirichlet filter as the appropriate theoretical tool. In Section 4 we present numerical results

and in Section 5 we draw conclusions.

2. Theory

We consider a rectangular channel X ¼ ½0; Lx� � ½�d; d� � ½0; Lz� � R3. The coordinate directions x, y, z,
following the usual convention, are aligned with the streamwise, wall-normal, and spanwise directions,

respectively. The velocity components are likewise denoted u ¼ ðu; v;wÞ. The objective is to solve the in-

compressible, isothermal, Navier–Stokes equations in X, viz.,

ou

ot
¼ �$p þH þ mDuþ ex; ð1Þ

$ 
 u ¼ 0; ð2Þ

where t denotes time, H ¼ u� x, x ¼ $ � u (the vorticity), D denotes the Laplacian, ex is the unit vector in

the x-direction, and m is the kinematic viscosity. Res ¼ usd=m is the Reynolds number based on the friction

velocity, us ¼
ffiffiffiffiffiffiffiffi
s=q

p
, in which q is density and s is the wall shear. The boundary conditions are periodic in
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the x- and z-directions, and no-slip at y ¼ �d. Note that the flow is driven by a prescribed unit pressure

gradient in the minus x-direction. The problem configuration is schematically illustrated in Fig. 1.

By virtue of periodicity in x and z, the velocity may be written in terms of the following Fourier series:

uðx; y; z; tÞ ¼
X
kx

X
kz

ûukðy; tÞeikxxeikzz; ð3Þ

where k ¼ ðkx; kyÞ is the wave vector. We are interested in properties of the mean flow and so we introduce

the following mean value operators:

½
� ¼ 1

LxLz

Z Lx

0

Z Lz

0

dzdx; ð4Þ

h
i ¼ 1

T

Z T

0

dt: ð5Þ

Application of ½
� to the streamwise component of (1) results in

oU
ot

ðy; tÞ ¼ o

oy

 
�
X
kx

X
kz

ûukðy; tÞv̂v�kðy; tÞ þ m
oU
oy

ðy; tÞ þ y

!
; ð6Þ

where we have introduced the notation U ¼ ûu0. Application of h
i to (6) yields

Uðy; T Þ � Uðy; 0Þ
T

¼ d
dy

 
�

X
kx

X
kz

ûukv̂v�k

* +
ðyÞ þ m

dhUi
dy

ðyÞ þ y

!
: ð7Þ

For T sufficiently large, we expect the left-hand side to become negligible. We also assume skew-symmetry
with respect to y for the averaged quantities. These assumptions lead to the following first integral, or

conservation law, expressing the balance of shear stresses

Fig. 1. Problem setup for the channel flow.
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0 ¼ �
X
kx

X
kz

ûukv̂v�k

* +
ðyÞ þ m

dhUi
dy

ðyÞ þ y 8y 2 ½�d;þd�: ð8Þ

The first term in (8) is the Reynolds shear stress and the second is the viscous shear stress.

3. Discrete approximation

In the discrete approximation, the number of terms in the Fourier series is taken to be finite, say Nx and

Nz for the x- and z-directions, and the Fourier coefficients are expanded in terms of basis functions in y. For

example, we write

Uhðy; tÞ ¼
XNy�3

n¼0

rnðyÞUnðtÞ; ð9Þ

where the superposed h is used to differentiate the approximate solution, Uh, from the exact solution, U . An

example of a basis frngn¼Ny�3

n¼0 is given by

rnðyÞ ¼ 1

	
� y

d


 �2
�
Pn

y
d


 �
; ð10Þ

where Pn is the Legendre polynomial of order n (see [3]). Note that each rn satisfies the no-slip boundary

conditions. This basis has been introduced by Lopez and Moser [4] and results for it are reported upon in

[5]. The approach is based on earlier work of Moser et al. [6] and Kim et al. [7], and the reader is referred to

these works for further details. The discrete approximation of (6) employs Galerkin�s method, in which the
residual of (6) is orthogonalized with respect to frngn¼Ny�3

n¼0 , viz.,

0 ¼
Z d

�d
rmðyÞ

oUh

ot
ðy; tÞ

 
� o

oy

 
�
X
kx

X
kz

ûuhkðy; tÞv̂vh�kðy; tÞ þ m
oUh

oy
ðy; tÞ þ y

!!
dy;

m ¼ 0; 1; . . . ;Ny � 3; ð11Þ

where ûuhk and v̂vhk are discrete approximations of ûuk and v̂vk, respectively. Application of the mean value

operator h
i to (11) yieldsZ d

�d
rmðyÞ

Uhðy; T Þ � Uhðy; 0Þ
T

 �
dy ¼

Z d

�d
rmðyÞ

d

dy

  
�

X
kx

X
kz

ûuhkv̂v
h
�k

* +
ðyÞ þ m

dhUhi
dy

ðyÞ þ y

!!
dy;

m ¼ 0; 1; . . . ;Ny � 3: ð12Þ

As in the continuous case, we expect the left-hand side becomes negligible for sufficiently large T . Assuming

this to be the case and integrating-by-parts results in

0 ¼
Z d

�d

drm
dy

ðyÞ
 

�
X
kx

X
kz

ûuhkv̂v
h
�k

* +
ðyÞ þ m

dhUhi
dy

ðyÞ þ y

!
dy; m ¼ 0; 1; . . . ;Ny � 3; ð13Þ

where we have used the fact that the basis functions satisfy the no-slip boundary condition, that is,

rmð�dÞ ¼ 0, m ¼ 0; 1; . . . ;Ny � 3. This is the discrete analog of (8), but note, in contrast to the continuous
case where the conservation law is satisfied strongly as a function of y 2 ½�d; d�, here it is satisfied weakly, in

an integral sense. This has implications with respect to the way we calculate shear stresses.
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Remarks

(1) In practice, a time-integration algorithm is used to discretize time. The deductions made place re-

strictions on the time-integration scheme, but they are typically satisfied by commonly used methods. It is

sufficient that the time-integration scheme discretizes in such a way that (12) can be derived from the time-

discretized version of (11). This means that the summation over time steps produces a simple difference

quotient form of the time derivative (see (11)).

(2) The results obtained are applicable to cases in which functions other than Fourier modes and modified

Legendre polynomials are used. However it is important that the wall-normal functions vanish at the walls.

3.1. Projection

Let V ¼ L2ð�d; dÞ ¼ ff jf : ð�d; dÞ ! R;
R d
�dðf ðyÞÞ

2
dy < 1g. Consider a finite-dimensional subspace of

V, denoted by ~VV, spanned by a basis f/ng
N
n¼0. Let ~PP : V ! ~VV denote the L2-projection operator onto ~VV.

~PP is characterized by the variational problem: Given f 2 V, find ~ff 2 ~VV such that the least-squares

potential

P ð ~ff Þ ¼ 1

2

Z d

�d
ð ~ff ðyÞ � f ðyÞÞ2dy; ð14Þ

is minimized, where

~ff ðyÞ ¼
XN
n¼0

/nðyÞ ~ffn ¼ /ðyÞ 
 ~ff ð15Þ

in which / ¼ ð/0;/1; . . . ;/N Þ
T

and ~ff ¼ ð ~ff0; ~ff1; . . . ; ~ffN Þ
T
. The solution of the variational problem is ob-

tained by solving the linear system

XN
n¼0

Z d

�d
/mðyÞ/nðyÞdy ~ffn ¼

Z d

�d
/mðyÞf ðyÞdy; m ¼ 0; 1; . . . ;N : ð16Þ

In matrix notation this can be written as

M~ff ¼ f ; ð17Þ

where

M ¼
Z d

�d
/ðyÞ � /ðyÞdy; ð18Þ

f ¼
Z d

�d
/ðyÞf ðyÞdy: ð19Þ

In (18), � is the tensor, or outer, product, and M is referred to as the Gram, or mass, matrix. Note from

(16), that if f 2 V is orthogonal to the basis of ~VV, then f ¼ 0, and ~ff ¼ ~PPf ¼ 0.

3.2. Induced filter

The projector ~PP induces a filter defined by (see [8,9])

~ff ¼ ~PPf ¼ gHf ; ð20Þ
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~ff ðyÞ ¼
Z d

�d
gðy; y0Þf ðy 0Þdy0; ð21Þ

where g, the kernel, is given by

gðy; y 0Þ ¼ /ðyÞ 
M�1/ðy0Þ: ð22Þ

This can be seen from the following calculation:

~ff ðyÞ ¼ /ðyÞ 
 ~ff ðby ð15ÞÞ
¼ /ðyÞ 
M�1f ðby ð17ÞÞ

¼ /ðyÞ 
M�1

Z d

�d
/ðy0Þf ðy 0Þdy 0 ðby ð19ÞÞ

¼
Z d

�d
/ðyÞ 
M�1/ðy0Þf ðy 0Þdy 0: ð23Þ

Due to the symmetry of M, gðy; y 0Þ ¼ gðy0; yÞ. However, in general, g will be inhomogeneous.

3.3. Discrete conservation law

Define f 2 V by

f ¼ �
X
kx

X
kz

ûuhkv̂v
h
�k

* +
þ m

dhUhi
dy

þ id; ð24Þ

where id is the identity operator, i.e., idðyÞ ¼ y. Specify ~VV in the following way:

~VV ¼ span
drn
dy

� �Ny�3

n¼0

: ð25Þ

In the previous developments this amounts to setting /n ¼ drn=dy; n ¼ 0; 1; . . . ;N ¼ Ny � 3. Then, from

(13), we see that f 2 V is orthogonal to ~VV. Consequently, ~ff ¼ ~PPf ¼ 0. By the linearity of ~PP, it follows

that

0 ¼ ~ff ¼ � ~PP
X
kx

X
kz

ûuhkv̂v
h
�k

* +
þ ~PPm

dhUhi
dy

þ ~PP id: ð26Þ

Eq. (26) says that the L2-projections of the numerically calculated Reynolds and viscous shear stresses, onto

the space of y-derivatives of the basis functions used in the expansion of Uh, satisfy a pointwise conser-

vation law identical to that of the exact solution (cf. (8)).

Remarks

(1) The filter induced by L2-projection onto ~VV, given by (25), is defined by

gðy; y 0Þ ¼ dr

dy
ðyÞ 
 K�1 dr

dy
ðy 0Þ; ð27Þ

where r ¼ ðr0; r1; . . . ; rNy�3ÞT, and
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K ¼
Z d

�d

dr

dy
ðyÞ � dr

dy
ðyÞdy ð28Þ

which is referred to as the Dirichlet, or stiffness, matrix. ~PP is called the Dirichlet projector in this case, and

(27) is the kernel defining the Dirichlet filter.
(2) If a subgrid-scale stress model is included, the results need to be generalized as follows. Let ~TT h

yx0ðy; tÞ
denote the numerically computed Fourier coefficient of the zero wave-vector y; x-component of the subgrid-

scale shear stress. Then

f ¼ �
X
kx

X
kz

ûuhkv̂v
h
�k

* +
þ ~TT h

yx0 þ m
dhUhi
dy

þ id ð29Þ

and

0 ¼ ~ff ¼ � ~PP
X
kx

X
kz

ûuhkv̂v
h
�k

* +
þ ~PP ~TT h

yx0 þ ~PPm
dhUhi
dy

þ ~PP id: ð30Þ

(3) In the case of the basis defined by (10)

dr0
dy

ðyÞ ¼ �2yP0=d
2 ð31Þ

in which P0 is a constant. Consequently, this basis contains the monomial y. As a result ~PP id ¼ id, and thus

the projected Reynolds, model and viscous shear stresses in (30) will sum exactly to �y.
(4) The functions f and ~ff given by (24), (26), (29) and (30) may be viewed as residuals of the balance of

total shear stress and thus may be used as measures of error in numerical calculations. This is the view

taken in the following section.

4. Numerical results

We consider an Res ¼ 395 equilibrium channel flow and employ the method described previously using
the modified Legendre basis. A resolution of Nx ¼ Ny ¼ Nz ¼ 32 is used, and Lx ¼ 2p, d ¼ 1, and Lz ¼ 4p=3.

Fig. 2. Unfiltered total shear stress residual at various times (coarse DNS).
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See [5] for additional details. We compare unfiltered and Dirichlet-filtered quantities. We study the

pointwise convergence of the residuals f and ~ff with time, f versus ~ff at particular times, the L2-error

convergence in f and ~ff with time, and the budgets of f and ~ff at specific times. The L2-residual errors are

defined by

ef ¼
Z d

�d
ðf ðyÞÞ2 dy

 �1=2

; ð32Þ

Fig. 3. Dirichlet-filtered total shear stress residual at various times (coarse DNS).

Fig. 4. Comparison of unfiltered and Dirichlet-filtered total shear stress residual at t ¼ 30 (coarse DNS).
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e ~ff ¼
Z d

�d
ð ~ff ðyÞÞ2 dy

 �1=2

: ð33Þ

4.1. Coarse DNS

The mean centerline velocity is approximately 18.3. Thus it takes 0:34 time units for a centerline fluid

particle to flow through the domain. This calculation was run for 120 time units which is about 353 flow-

through times. Figs. 2 and 3 show the convergence of f and ~ff , defined by (24) and (26), respectively. Note
from Fig. 2 that the unfiltered case exhibits significant oscillations which do not diminish with time,

Fig. 5. Comparison of unfiltered and Dirichlet-filtered total shear stress residual at t ¼ 120 (coarse DNS).

Fig. 6. L2-errors in unfiltered and Dirichlet-filtered total shear stress residuals versus time (coarse DNS).
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whereas the Dirichlet-filtered case in Fig. 3 is converging to zero. Note also that the scale in Fig. 3 is about

an order of magnitude smaller than Fig. 2 and thus ~ff is actually much smaller than f . This can be seen by

comparing f and ~ff at t ¼ 30 and 120, in Figs. 4 and 5, respectively. A comparison of the L2-error in Fig. 6

clearly shows lack of convergence of the unfiltered case and convergence of the Dirichlet-filtered case of

approximate Oðt�1Þ. Finally, budgets of f and ~ff at t ¼ 120 are presented in Figs. 7 and 8. In the unfiltered

case the oscillations are seen to emanate from the Reynolds shear stress. (A comparison of the Reynolds

stress with the DNS benchmark solution of Moser et al. [10] is presented in Fig. 31 of [5] . Despite the

coarseness of our simulation, the results compare very well.)

Fig. 7. Unfiltered shear stress budget at t ¼ 120 (coarse DNS).

Fig. 8. Dirichlet-filtered shear stress budget at t ¼ 120 (coarse DNS).
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4.2. Dynamic model

A similar study was undertaken for the dynamic Smagorinsky model (see [11–14]). Implementational

details may be found in [5]. The mean centerline velocity is approximately 20.9. Thus it takes 0.3 time units

for a centerline fluid particle to flow through the domain. The calculation was run for 116 time units, which

is about 387 flow-through times. Figs. 9 and 10 show the convergence of f and ~ff defined by (29) and (30),

respectively. The results are similar to the coarse DNS case in that the unfiltered residual fails to converge

whereas the Dirichlet-filtered residual does converge. Note again that the scale of Fig. 10 is about an order

of magnitude smaller than Fig. 9, and likewise ~ff is much smaller than f . This can be seen better by

Fig. 9. Unfiltered total shear stress residual at various times (dynamic Smagorinsky model).

Fig. 10. Dirichlet-filtered total shear stress residual at various times (dynamic Smagorinsky model).
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comparisons of f and ~ff at t ¼ 20 and 116 in Figs. 11 and 12, respectively. Note that in Figs. 11 and 12, in

addition to a highly oscillatory component of error, there is a very low mode component as well, unlike the

coarse DNS case. This mode is approximately constant and might not be removed by increased resolution.

The L2-errors are presented in Fig. 13. The unfiltered case fails to converge and the convergence of the

filtered case is roughly Oðt�1Þ. Finally the budgets of f and ~ff at t ¼ 116 are presented in Figs. 14 and 15,

respectively. As in the coarse DNS case, oscillations are visible in the unfiltered case. (An accuracy as-

sessment of the Reynolds stress, model included, with the DNS benchmark of Moser, et al. [10] is presented

in Fig. 31 of [5]. Again, the accuracy is quite good.)

Fig. 11. Comparison of unfiltered and Dirichlet-filtered total shear stress residual at t ¼ 20 (dynamic Smagorinsky model).

Fig. 12. Comparison of unfiltered and Dirichlet-filtered total shear stress residual at t ¼ 116 (dynamic Smagorinsky model).
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5. Conclusions

We have examined the Fourier–Galerkin formulation of turbulent channel flows and shown that the

Dirichlet-filtered mean shear stresses satisfy the balance of total shear stress, a measure of conservation,
pointwise, even though the unfiltered stresses only satisfy conservation in a weak, integral sense. The Di-

richlet filter is thus identified as the appropriate tool for computing the shear stress budget. The theoretical

ideas are supported by numerical calculations of a coarse DNS and an LES employing the dynamic

Smagorinsky model.

Fig. 13. L2-errors in unfiltered and Dirichlet-filtered total shear stress residuals versus time (dynamic Smagorinsky model).

Fig. 14. Unfiltered shear stress budget at t ¼ 116 (dynamic Smagorinsky model).
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The ideas presented are more general than the specific application. They represent ways of extricating

information from calculations that simultaneously are higher-order accurate and precisely attain conser-
vation.
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